
4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 1/20

This document describes various ways to implement multi-tenancy in Cloud Spanner (/spanner).
It also discusses data management patterns and tenant lifecycle management.

Multi-tenancy (https://wikipedia.org/wiki/Multitenancy) is when a single instance, or a few
instances, of a software application serves multiple tenants or customers. This software
pattern can scale from a single tenant or customer to hundreds or thousands. This approach is
fundamental to cloud computing platforms where the underlying infrastructure is shared
among multiple organizations.

Think of multi-tenancy as a form of partitioning based on shared computing resources, like
databases. An analogy is tenants in an apartment building: shared infrastructure, but dedicated
tenant space. Multi-tenancy is part of most, if not all, software-as-a-service (SaaS)
applications.

This document is for database architects, data architects, and engineers that implement multi-
tenant applications on Spanner as their relational database. Using that context, it outlines
various approaches to store multi-tenant data. The terms "tenant", "customer", and
"organization" are used interchangeably throughout the article to indicate the entity that's
accessing the multi-tenant application.

This article uses a human-resources (HR) SaaS provider implementing its multi-tenant
application on Google Cloud as an example. In the example, several customers of the HR SaaS
provider must access the multi-tenant application. These customers are called tenants.

Spanner (/spanner) is Google Cloud's fully managed, enterprise-grade, distributed, and
consistent database which combines the bene�ts of the relational database model with non-
relational horizontal scalability. Spanner has relational semantics—with schemas, enforced
data types, strong consistency, multi-statement ACID transactions, and a SQL query language
implementing ANSI 2011 SQL.

Spanner provides zero-downtime for planned maintenance or region failures, with an
availability SLA of 99.999% (/spanner/sla). It supports modern, multi-tenant applications by
providing high availability and scalability. This article discusses the different architecture
approaches to implement multi-tenancy with Spanner.

Implementing multi-tenancy in Cloud Spanner

https://cloud.google.com/spanner
https://wikipedia.org/wiki/Multitenancy
https://cloud.google.com/spanner
https://cloud.google.com/spanner/sla

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 2/20

Criteria for tenant data-mapping criteria

In a multi-tenant application, each tenant's data is isolated in one of several architecture
approaches in the underlying Spanner database. The following list outlines the different
architecture approaches used to map a tenant's data to Spanner:

Instance: A tenant resides exclusively in one Spanner instance, with exactly one
database for that tenant.

Database: A tenant resides in a database in a single Spanner instance containing
multiple databases.

Schema: A tenant resides in exclusive tables within a database, and several tenants can
be located in the same database.

Table: Tenant data are rows in database tables. Those tables are shared with other
tenants.

The preceding criteria are called data management patterns and are discussed in detail in the
Multi-tenancy data management patterns (#multi-tenancy-data-management-patterns) section. That
discussion is based on the following criteria:

Isolation: The degree of data isolation across multiple tenants is a major consideration
for multi-tenancy. Isolation is driven by the choices made for the criteria under other
categories—for example, certain regulatory and compliance requirements can dictate a
greater degree of isolation.

Agility: The ease of onboarding and offboarding activities for a tenant with respect to
creating an instance, database, or table.

Operations: The availability or complexity of implementing typical, tenant-speci�c,
database operations and administration activities—for example, regular maintenance,
logging, backups, or disaster recovery operations.

Scale: The ability to scale seamlessly to allow for future growth. The description of each
pattern contains the number of tenants the pattern can support.

Performance: The ability to allocate exclusive resources to each tenant, address the
noisy neighbor
 (https://wikipedia.org/wiki/Cloud_computing_issues#Performance_interference_and_noisy_neighbo
rs)

phenomenon, and enable predictable read and write performance for each tenant.

https://wikipedia.org/wiki/Cloud_computing_issues#Performance_interference_and_noisy_neighbors

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 3/20

Regulations and compliance: The ability to address the requirements of highly regulated
industries and countries that require the complete isolation of resources and
maintenance operations—for example, data residency requirements for France require
that personally identi�able information is physically stored exclusively within France.

Each data management pattern as it relates to these criteria is detailed in the next section. Use
the same criteria when selecting a data management pattern for a speci�c set of tenants.

Multi-tenancy data management pa�erns

The following sections describe the four main data management patterns: instance, database,
schema, and table.

Instance

To provide complete isolation, the instance data management pattern stores each tenant's
data in its own Spanner instance and database. A Spanner instance can have one or more
databases. In this pattern, only one database is created. For the HR application discussed
earlier, a separate Spanner instance with one database is created for each customer
organization.

As seen in the following diagram, the data management pattern has one tenant per instance.

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 4/20

Having separate instances for each tenant allows the use of separate Google Cloud projects to
achieve separate trust boundaries for different tenants. An extra bene�t is that each instance
con�guration can be chosen based on each tenant's location (either regionally or multi-
regionally), optimizing location �exibility and performance.

The architecture can easily scale to any number of tenants. SaaS providers can create any
number of instances in the desired regions, without any hard limits.

The following table outlines how the instance data management pattern affects different
criteria.

Criteria Instance — one tenant per instance data management pattern

Isolation Greatest level of isolation

No database resources are shared

Agility Onboarding and offboarding require considerable setup or decommissioning
for:

The Spanner instance

Instance-speci�c security

Instance-speci�c connectivity

Onboarding and offboarding can be automated through Infrastructure as
Code (IaC) (/solutions/infrastructure-as-code)

Operations Independent backups for each tenant

Separate and �exible backup schedules

Higher operational overhead

Large number of instances to manage and maintain (scaling,
monitoring, logging, and performance tuning)

Scale Highly scalable database

Unlimited growth by adding nodes

Unlimited number of tenants

Spanner instance available for each tenant

https://cloud.google.com/solutions/infrastructure-as-code

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 5/20

Criteria Instance — one tenant per instance data management pattern

Performance Each tenant in a separate instance

No resource contention

Tailored performance tuning and troubleshooting for each tenant

Regulatory and compliance
requirements

Store data in a speci�c region

Implement speci�c security, backup, or auditing processes as required by
businesses or governments

In summary, the key takeaways are:

Advantage: Highest level of isolation

Disadvantage: Greatest operational overhead

The instance data management pattern is best suited for the following scenarios:

Different tenants are spread across a wide range of regions and need a localized
solution.

Regulatory and compliance requirements for some tenants demand greater levels of
security and auditing protocols.

Tenant size varies signi�cantly, such that sharing resources among high-volume, high-
tra�c tenants might cause contention and mutual degradation.

Database

In the database data management pattern, each tenant resides in a database within a single
Spanner instance. Multiple databases can reside in a single instance. If one instance is
insu�cient for the number of tenants, create multiple instances. This pattern implies that a
single Spanner instance is shared among multiple tenants.

Spanner has a hard limit (/spanner/quotas#database_limits) of 100 databases per instance. This
limit means that if the SaaS provider needs to scale beyond 100 customers, they need to
create and use multiple Spanner instances.

For the HR application, the SaaS provider creates and manages each tenant with a separate
database in a Spanner instance.

https://cloud.google.com/spanner/quotas#database_limits

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 6/20

As seen in the following diagram, the data management pattern has one tenant per database.

The database data management pattern achieves logical isolation on a database level for
different tenants' data. However, because it's a single Spanner instance, all the tenant
databases share the same regional con�guration and underlying compute and storage setup.

The following table outlines how the database data management pattern affects different
criteria.

Criteria Database — one tenant per database data management pattern

Isolation Complete logical isolation on the database level

Shared underlying infrastructure resources

Agility Requires effort to create or delete the database and any speci�c security
controls

Automation for onboarding and offboarding comes through IaC

Operations Independent backups for each tenant

Flexible scheduling

Less operational overhead compared to the instance pattern

One instance to monitor for up to 100 databases

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 7/20

Criteria Database — one tenant per database data management pattern

Scale Highly scalable database

Unlimited instances

Allows thousands of nodes

Limit of 100 databases per instance

For every 100 tenants, create a new Spanner instance

Performance Resource contention among multiple databases

Databases spread across Spanner instance nodes

Databases share infrastructure

Noisy neighbors affect performance

Regulatory and compliance
requirements

Location region must match the instance region to meet any speci�c data
residency regulatory requirements

In summary, the key takeaways are:

Advantage: Higher level of isolation

Disadvantage: Limited number of tenants per instance; location in�exibility

The database data management pattern is best suited for the following scenarios:

Multiple customers are in the same data residency—for example, France, or the UK—
and/or are under the same regulatory authority.

Tenants require system-based data separation and backup/restore, but are �ne with
infrastructure resource sharing.

Schema

In the schema data management pattern, a single database—which implements a single
schema—is used for multiple tenants and a separate set of tables is used for each tenant's
data. These tables can be differentiated by including the tenant ID in the table names as
either a pre�x or a su�x.

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 8/20

This data management pattern of using a separate set of tables for each tenant provides a
much lower level of isolation compared to the preceding options (the instance and database
management patterns). The pattern also makes onboarding simple—it involves creating new
tables and associated referential integrity and indexes.

One signi�cant caveat is that access permissions for Spanner through Identity and Access
Management (IAM) are only provided at the instance or database level. Access permissions
can't be provided at the table level. There's also a limit of 5,000 tables per database. For many
customers, that limit restricts their use of the application.

Furthermore, using separate tables for each customer can result in a large backlog of schema
update operations. Such a backlog takes a long time to resolve (/spanner/docs/schema-updates).

For the HR application, the SaaS provider can create a set of tables for each customer with
tenant ID as the pre�x in the table names—for example, customer1_employee,
customer1_payroll, customer1_department.

As seen in the following diagram, the schema data management pattern has one set of tables
for each tenant.

The following table outlines how the schema data management pattern affects different
criteria.

https://cloud.google.com/spanner/docs/schema-updates

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 9/20

Criteria Schema — one set of tables for each tenant data management patternCriteria Schema — one set of tables for each tenant data management pattern

Isolation Low level of isolation

No table level security

Agility Onboarding a customer is trivial

Create new tables

Create associated keys and indexes

Offboarding a customer means deleting tables

May have a temporary negative performance impact on other tenants
within the database

Operations No separate operations for tenants

Backup, monitoring, and logging must be implemented as separate
application functions or as utility scripts

Scale Thousands of nodes

Unlimited tenant growth

A single database can only have 5,000 tables

Only �oor (5,000/<number tables for tenant>) number of tenants in
each database

When the database exceeds 5,000 tables, add a new database for the
additional tenants

Performance High level of resource contention is possible

Ensure good performance by separately designing indexes for each set of
tables

Regulatory and compliance
requirements

Location region must match to meet any speci�c data residency regulatory
requirements

Implementing speci�c security and auditing controls affects all tenants
residing in the same database

In summary, the key takeaways are:

Advantage: Onboarding is trivial

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 10/20

Disadvantage: Higher operational overhead; no security controls at the table level

The schema data management pattern is best suited for the following scenarios:

Internal applications that cater to different departments where strict data security
isolation isn't a prominent concern when compared to the ease of maintenance.

Multi-tenant applications where the data doesn't require strict separation based on legal
or regulatory requirements.

While it's possible to create several sets of tables (each set representing a tenant) in a
database, it's the least ideal pattern from a database perspective. The main reason is that the
tables must follow naming conventions. The application, and any database tooling (for
example, IDE, and schema migration tools), must understand the naming convention. Also, if
the number of tables is reasonably large per tenant, the schema data management pattern
doesn't provide signi�cant scaling.

A better approach is to move to either one database per tenant and increase the number of
instances, or move to the table data management pattern.

Table

The �nal data management pattern serves multiple tenants with a common set of tables. Each
table contains data for several tenants. This data management pattern represents an extreme
level of multi-tenancy where everything—from infrastructure to schema to data model—is
shared among multiple tenants. Within a table, rows are partitioned based on primary keys,
with tenant ID as the �rst element of the key. From a scaling perspective, Spanner supports
this pattern best because it can scale tables without limitation.

For the HR application, the payroll table's primary key can be a combination of customerID and
payrollID.

As seen in the following diagram, the table data management pattern has one table for several
tenants.

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 11/20

Similar to the schema pattern, data access in the table pattern can't be controlled separately
for different tenants. Using fewer tables means schema update operations complete faster
when each tenant has their own database tables. To a large extent, this approach simpli�es
onboarding, offboarding, and operations.

The following table outlines how the table data management pattern affects different criteria.

Criteria Table — one table for several tenants data management pattern

Isolation Lowest level of isolation

No tenant level security

Agility No setup required on the database side when onboarding

The application can directly write data into the existing tables

Offboarding means deleting the customer's rows in the table

Operations No separate operations for tenants, including backup, monitoring, and
logging

Little to no overhead as the number of tenants increases

Scale Scales to thousands of nodes

Can accommodate any level of tenant growth

Supports an unlimited number of tenants

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 12/20

Criteria Table — one table for several tenants data management pattern

Performance Pattern works well in the context of Spanner

Internal distributed storage, processing, and load balancing can easily work
with this pattern

If primary key spaces are not designed carefully, a high level of resource
contention is possible (noisy neighbor)

Can prevent concurrency and distribution

Following best practices is important

Deleting a tenant's data might have a temporary impact on the load

Regulatory and compliance
requirements

Location must match to meet any speci�c data residency regulatory
requirements

Pattern can't provide system-level partitioning (compared to the instance or
database pattern)

Implementing any speci�c security and auditing controls affects all tenants

In summary, the key takeaways are:

Advantage: Highly scalable; has low operational overhead

Disadvantage: High resource contention; lack of security controls for each tenant

This pattern is best suited for the following scenarios:

Internal applications that cater to different departments where strict data security
isolation isn't a prominent concern when compared to ease of maintenance.

Maximum resource sharing for tenants using free-tier application functionality when
minimizing resource provisioning at the same time.

Data management pa�erns and tenant lifecycle management

The following table compares the various data management patterns across all criteria at a
high level.

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 13/20

Instance Database Schema TableInstance Database Schema Table

Isolation Complete Complete Low Lowest

Agility Low Moderate Moderate Highest

Ease of operations High High Low Low

Scale High Limited Potentially very limited High

Performance* High Moderate Moderate Potentially high

Regulations and compliance Highest High Low Low

* Performance is heavily dependent on the schema design (/spanner/docs/schema-design) and
query best practices (/spanner/docs/sql-best-practices). The values here are only an average
expectation.

The best data management patterns for a speci�c multi-tenant application are those that
satisfy most of its requirements based on the criteria. If a particular criterion isn't required, you
can ignore the row it's in.

Combined data management pa�erns

Often, a single data management pattern is su�cient to address the requirements of a multi-
tenant application. When that's the case, the design can assume a single data management
pattern.

Some multi-tenant applications require several data management patterns at the same time,
however—for example, a multi-tenant application that supports a free tier, a regular tier, and an
enterprise tier.

Free tier:

Must be cost effective

Must have an upper data-volume limit

Usually supports limited functionality

The table data management pattern is a good free-tier candidate

Tenant management is simple

https://cloud.google.com/spanner/docs/schema-design
https://cloud.google.com/spanner/docs/sql-best-practices

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 14/20

No need to create speci�c or exclusive tenant resources

Regular tier:

Good for paying clients who have no speci�cally strong scaling or isolation
requirements

The schema data management pattern or the database data management pattern
is a good regular-tier candidate

Tables and indexes are exclusive for the tenant

Backup is easy in the database data management pattern

Backup isn't supported for the schema data management pattern

Tenant backup must be implemented as a utility outside Spanner

Enterprise tier:

Usually a high-end tier with full autonomy in all aspects

Tenant has dedicated resources that include dedicated scaling and full isolation

The instance data management pattern is well suited for the enterprise tier

A best practice is to keep different data management patterns in different databases. While it's
possible to combine different data management patterns in a Spanner database, doing so
makes it di�cult to implement the application's access logic and lifecycle operations.

The Application design (#application-design) section outlines some multi-tenant application
design considerations that apply when using a single data management pattern or several data
management patterns.

Manage the tenant lifecycle

Tenants have a life cycle. Therefore, you must implement the corresponding management
operations within your multi-tenant application. Beyond the basic operations of creating,
updating, and deleting tenants, consider the following additional data-related operations:

Export tenant data:

When deleting a tenant, it's a best practice to export their data �rst and possibly
make the dataset available to them.

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 15/20

When using the table or schema data management pattern, the multi-tenant
application system must implement the export or map it to the database
functionality (database export).

Back up tenant data:

When using the instance or database data management pattern and backing up
data for individual tenants, use the database's export or backup functions.

When using the schema or table data management pattern and backing up data for
individual tenants, the multi-tenant application must implement this operation. The
Spanner database can't determine which data belongs to which tenant.

Move tenant data:

Moving a tenant from one data management pattern to another (or moving a tenant
within the same data management pattern between instances or databases)
requires extracting the data from the table data management pattern and inserting
that data into the database data management pattern.

When application downtime is possible, perform an export/import.

When downtime isn't possible, perform a zero downtime database migration
 (https://medium.com/google-cloud/zero-downtime-database-migration-and-replication-
to-and-from-cloud-spanner-99ad0c654d12)

.

Mitigating a noisy-neighbor situation is another reason to move tenants.

Application design

When designing a multi-tenant application, implement tenant-aware business logic. That
means each time the application runs business logic, it must always be in the context of a
known tenant.

From a database perspective, application design means that each query must be run against
the data management pattern in which the tenant resides. The following sections highlight
some of the central concepts of multi-tenant application design.

Dynamic tenant connection and query con�guration

https://medium.com/google-cloud/zero-downtime-database-migration-and-replication-to-and-from-cloud-spanner-99ad0c654d12

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 16/20

Dynamically mapping tenant data to tenant application requests uses a mapping con�guration:

For database data management patterns or instance data management patterns, a
connection string is su�cient to access a tenant's data.

For schema data management patterns, the correct table names have to be determined.

For table data management patterns, queries have to be executed against the database.
Use the appropriate predicates to retrieve a speci�c tenant's data.

A tenant can reside in any of the four data management patterns. The following mapping
implementation addresses a connection con�guration for the general case of a multi-tenant
application that uses all the data management patterns at the same time. When a given tenant
resides in one pattern, some multi-tenant applications use one data management pattern for
all tenants. This case is covered implicitly by the following mapping.

If a tenant executes business logic (for example, an employee logging in with their tenant ID)
then the application logic must determine the tenant's data management pattern, the location
of the data for a given tenant ID, and, optionally, the table-naming convention (for the schema
pattern).

This application logic requires tenant-to-data-management pattern mapping. In the following
code sample, the connection string refers to the database where the tenant data resides.
The sample identi�es the Spanner instance and the database. For the data management
pattern instance and database, the following code is su�cient for the application to connect
and execute queries:

Additional design is required for the schema and table data management patterns.

Schema data management pattern

For the schema data management pattern, there are several tenants within the same database.
Each tenant has its own set of tables. The tables are distinguished by their name. Which table
belongs to which tenant is deterministic.

tenant id -> (data management pattern,

 database connection string,

 [table_prefix])

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 17/20

One approach is to prepend the table names with the tenant ID—for example, the EMPLOYEE
table is called T356_EMPLOYEE for the tenant with the ID 356. The application has to prepend
each table with the pre�x Ttenant ID before sending the query to the database that the
mapping returned.

Another approach is to prepend a table_prefix to the mapping used by the query so it �nds
the correct tables for a tenant.

A mixed approach is possible as well: if the data management pattern is the schema pattern,
and the table pre�x is empty, the default mapping takes place (prepend table names with
tenant IDs).

Table data management pattern

A similar design is required for the table data management pattern. In this pattern, there's a
single schema. Tenant data are stored as rows. To properly access the data, append a
predicate to each query to select the appropriate tenant.

One approach to �nd the appropriate tenant is to have a column called TENANT in each table.
The column value is tenant ID. Each query must append a predicate AND TENANT = tenant
ID to an existing WHERE clause or add a WHERE clause with the predicate AND TENANT =
tenant ID.

To connect to the database and to create the proper queries, the tenant identi�er must be
available in the application logic. It can be passed in as parameter or stored as thread context.

Some lifecycle operations require you to modify the tenant-to-data-management-pattern
mapping con�guration—for example, when you move a tenant between data management
patterns, you must update the data management pattern and the database connection string.
You might also have to update the table pre�x.

Query generation and a�ribution

A fundamental underlying principle of multi-tenant applications is that several tenants can
share a single cloud resource. The preceding data management patterns fall into this category,
except for the case where a single tenant is allocated to a single Spanner instance.

The sharing of resources goes beyond sharing data. Monitoring and logging is also shared—for
example, in the table data management pattern and schema data management pattern, all

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 18/20

queries for all tenants are recorded in the same audit log.

If a query is logged, then the query text has to be examined to determine which tenant the
query was executed for. In the table data management pattern, you must parse the predicate.
In the schema data management pattern, you must parse one of the table names.

In the database data management pattern or the instance data management pattern, the query
text doesn't have any tenant information. To get tenant information for these patterns, you
must query the tenant-to-data-management-pattern mapping table.

It would be easier to analyze logs and queries by determining the tenant for a given query
without parsing the query text. One way to uniformly identify a tenant for a query across all
data management patterns is to add a comment to the query text that has the tenant ID, and
(optionally) a label.

The following query selects all employee data for the tenant identi�ed by TENANT 356. To avoid
parsing the SQL syntax and extracting the tenant ID from the predicate, the tenant ID is added
as a comment. A comment can be extracted without having to parse the SQL syntax.

or

With this design, every query run for a tenant is attributed to that tenant independent of the
data management pattern. If a tenant is moved from one data management pattern to another,
the query text might change, but the attribution remains the same in the query text.

The preceding code sample is only one method. Another method is to insert a JSON
 (https://www.json.org/) object as a comment instead of a label and value:

select * from EMPLOYEE

 -- TENANT 356

 where TENANT = 'T356';

select * from T356_EMPLOYEE;

 -- TENANT 356

select * from T356_EMPLOYEE;

 -- {"TENANT": 356}

https://www.json.org/

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 19/20

Tenant access lifecycle operations

Depending on your design philosophy, a multi-tenant application can directly implement the
data lifecycle operations described earlier, or it can create a separate tenant-administration
tool.

Independent of the implementation strategy, lifecycle operations might have to be run without
the application logic running at the same time—for example, while moving a tenant from one
data management pattern to another, the application logic can't run because the data isn't in a
single database. When data isn't in a single database, it requires two additional operations
from an application perspective:

Stopping a tenant: Disables all application logic access while permitting data lifecycle
operations.

Starting a tenant: Application logic can access a tenant's data while the lifecycle
operations that would interfere with the application logic are disabled.

While not often used, an emergency tenant shutdown might be another important lifecycle
operation. Use this shutdown when you suspect a breach, and you need to prohibit all access
to a tenant's data—not only application logic, but lifecycle operations as well. A breach can
originate from inside or outside the database.

A matching lifecycle operation that removes the emergency status must also be available.
Such an operation can require two or more administrators to log in at the same time in order to
implement mutual control (https://wikipedia.org/wiki/Mutual_authentication).

Application isolation

The various data management patterns support different degrees of tenant-data isolation.
From the most isolated level (instance) to the least isolated level (table), different degrees of
isolation are possible.

In the context of a multi-tenant application, a similar deployment decision must be made: do all
tenants access their data (in possibly different data management patterns) using the same
application deployment? For example, a single Kubernetes cluster might support all tenants
and when a tenant accesses its data, the same cluster runs the business logic.

https://wikipedia.org/wiki/Mutual_authentication

4/20/2021 Implementing multi-tenancy in Cloud Spanner | Solutions | Google Cloud

https://cloud.google.com/solutions/implementing-multi-tenancy-cloud-spanner 20/20

Alternatively, as in the case of the data management patterns, different tenants might be
directed to different application deployments. Large tenants might have access to an
application deployment exclusive to them, while smaller tenants or tenants in the free tier
share an application deployment.

Instead of directly matching the data management patterns discussed in this article with
equivalent application-data management patterns, you can use the database data
management pattern so that all tenants share a single application deployment. It's possible to
have the database data management pattern and all these tenants share a single application
deployment.

Multi-tenancy is an important application-design-data management pattern, especially when
resource e�ciency plays a vital role. Spanner supports several data management patterns—
use it for implementing multi-tenant applications. With Spanner's extreme scalability and
rigorous SLAs, it's an ideal database for large multi-tenant application deployments.

What's next

Try out other Google Cloud features for yourself. Have a look at our tutorials
 (/docs/tutorials).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
 (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated 2021-04-19 UTC.

https://cloud.google.com/docs/tutorials
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

